Настройка частотного преобразователя для регулирования давления в трубопроводе
Поддержание заданного давления в трубопроводе — типовая задача для насосной станции. Давление в трубах меняется из-за изменения потребления в разные промежутки времени. Например, ночью, когда большинство людей спит, а предприятия останавливаются, разбор воды уменьшается и давление в системе возрастает. А утром наоборот снижается, т.к вода нужна сразу всем.
Раньше для регулирования применялись ручные или автоматические задвижки. При этом насос в любом случае работал на максимум. Теперь для регулирования давления используют частотный преобразователь. Попробуем разобраться, как это работает на примере Inovance MD290.
Структура
Вся система состоит из 3 основных элементов: электродвигателя с насосом, частотного преобразователя и датчика давления. Датчик устанавают на трубопроводе после насоса и подключают к аналоговому входу частотника, таким образом система получается «замкнутой».
Структурная схема «ПИД-регулятора»
ПИД-регулятор
ПИД (пропорционально-интегрально-дифференциальный) регулятор является центральным узлом замкнутой системы регулирования. С его помощью можно поддерживать не только давление, но и любой другой технологический параметр: температуру, расход, уровень.
ПИД-регулятор работает по принципу непрерывного сравнения двух величин, поступающих на его входы — сигнала задания и сигнала обратной связи от датчика. Разницу между показаниями называют рассогласованием или ошибкой.
В случае, когда значение задания превышает значение от датчика, регулятор увеличивает выходную частоту преобразователя частоты, увеличивая скорость работы электродвигателя и производительность насоса. Если же обратная связь оказывается больше задания, регулятор снижает выходную частоту и скорость двигателя. Давление таким образом поддерживается постоянным.
Датчик
От типа датчика давления зависит схема подключения и настроки преобразователя. Для нас важны параметры: тип сигнала, количество проводов подключения, и напряжение питания.
Тип сигнала подойдёт 0…10В, 0…20мА, 4…20мА. Мы рекомендуем 4…20мА, т.к такой сигнал устойчив к помехам и позволяет определить обрыв провода. Частотный преобразователь определяет тип сигнала в зависимости от положения перемычки J9 на плате управления. Для правильного функционирования с сигналом 4…20мА перемычка должны быть установлена в положение «I» — токовый сигнал. Если перемычка стоит неправильно, то частотный преобразователь будет считывать значения неверно. Неисправность будет определить сложно, т.к. частотник не покажет ошибки.
Количество проводов подключения
Датчик давления может быть двух или трёхпроводный, другие схемы используются крайне редко.
Двухпроводное подключение используется для датчиков с токовым сигналом 0(4)…20мА, их ещё называют «токовой петлей». В этом случае и питание, и сигнал передаются всего по 2 проводам.
Двухпроводное подключение датчика.
В трехпроводной схеме питание и сигнальный провод разделены. Такие датчики могут работать как с токовым сигналом, так и с сигналом по напряжению 0…10В.
Трехпроводное подключение датчика.
Напряжение питания в частотном преобразователе 24В DC, соответственно и датчик нужно использовать с подходящим напряжением питания. Встречается несколько разновидностей: 9…36В, 8…24В, 12…36В.
Подключение
Мы будем использовать первый попавшийся двухпроводный датчик давления с напряжением питания от 9 до 36В и выходом 4…20мА.
Датчик давления
У MD290 два аналоговых входа. AI1 поддерживает сигнал 0…10В, AI2 поддерживает сигналы 0…10В, 0…20мА и 4…20мА. Мы будем использовать AI2. Для работы с токовым сигналом 0…20мА и 4…20мА необходимо установить перемычку J4 в положение «I».
Подключим датчик к аналоговому входу AI2. При этом «+» датчика подключается к клемме «+24В», а «-» к входу «AI2». Между клеммами COM и GND необходимо установить перемычку.
Скоростью управляет датчик, поэтому для управления ПЧ не хватает только кнопки «пуск» или команды на запуск от ПЛК. Нас интересует вариант «попроще», поэтому подключаем кнопку «Пуск» к дискретному входу DI1.
Подключение цепей управления
Настройка
Настройку можно разделить на 2 части: базовое параметрирование и настройка ПИД-регулятора.
Вводим данные электродвигателя
F1-01 = 22 кВт — номинальная мощность двигателя
F1-02 = 380 В — номинальное напряжение двигателя
F1-03 = 42 А — номинальный ток двигателя
F1-04 = 50 Гц — номинальная частота двигателя
F1-05 = 1460 об/мин — номинальная скорость двигателя
Изменяем закон управления и команду запуска
F0-01 = 2 — скалярный закон регулирования (U/f)
F0-02 = 1 — команды управления через клеммы
F0-03 = 8 — задание частоты от ПИД регулятора
F4-00 = 1 — команда “Пуск”
Дополнительные параметры
Важны для правильного функционирования системы.
F0-14 = 20 Гц — нижнее ограничение заданной частоты. Задается, чтобы не допускать работу насоса на слишком низкой частоте, опасной перегревом.
F0-17 = 3 сек. — время разгона
F0-18 = 3 сек. — время торможения
F6-10 = 1 — торможение на свободном выбеге
Настраиваем ПИД-регулятор
FA-00 = 0 — дискретная уставка задания ПИД регулятора через FA-01.
В качестве задания может использоваться аналоговый вход частотника, импульсный вход или даже сетевой протокол. Дискретная уставка - самый простой способ, рассчитанный на поддержание определенного давления.
FA-01 = 50% — уставка задания в % от диапазона датчика.
Если весь диапазон датчика давления 0…10 бар, то уставка в 50% задает необходимое давление = 5 бар.
FA-02 = 1 — обратная связь ПИД регулятора.
В этом параметре выбирается тот аналоговый вход, к которому подключен датчик давления, в нашем случае это AI2.
FA-03 = 0 — прямое направление работы ПИД-регулятора.
Подразумевает увеличение выходной частоты при увеличении рассогласования. В случае обратного направления работы ПИД регулятора, он будет увеличивать выходную частоту при уменьшении рассогласования.
Важным моментом является масштабирование входного сигнала AI2. Т.к аналоговый вход рассчитан на сигнал 0…20мА, а датчик давления на 4…20мА, их необходимо привести в соответствие. Для этого проведем настройку кривой AI2 так, чтобы 4мА соответствовало 0%, а 20мА — 100%.
F4-18 = 2
F4-19 = 0
F4-20 = 10
F4-21 = 100
Настройка кривой AI2
Настроим «режим сна»
Ещё одним важным преимуществом регулирования давления с помощью частотного преобразователя, кроме автоматизации процесса, является энергосбережение. Зачастую для поддержания необходимого давления достаточно поддерживать минимальную скорость насоса или вовсе его останавливать. Для этого в частотнике предусмотрена функция сна. При достижении задания порогового значения, частотный преобразователь снижает выходную частоту до нуля и “засыпает”.
Как только давление в системе падает ниже определенного уровня и задание вырастает, частотник “пробуждается” и продолжает работу. Таким образом возможно достичь экономии электроэнергии до 30% относительно регулирования без частотного преобразователя.
F8-49 = 22 Гц — частота пробуждения
F8-50 = 10 сек — время задержки пробуждения
F8-51 = 21 Гц — частота засыпания
F8-52 = 10 сек — время задержки засыпания
Функция сна
Заключение
Применение частотных преобразователей для насосного оборудования решает сразу несколько задач: автоматизация процесса, защита двигателей и самого насоса от аварий и поломок, устранение гидроударов во всей системе.
А если систему расширить с помощью программируемого контроллера, то открывается ещё больше возможностей. Это и каскадные пуск насосной станции, и чередование насосов по наработке, и удаленное управление через сетевые протоколы.
Ещё по теме
Как запустить и настроить частотный преобразователь — инструкция для чайников
- Комментарии